Math 210B Lecture 4 Notes Daniel Raban January 14, 2019 # 1 Möbius Inversion, Cyclotomic Polynomials, and Field Embeddings ### 1.1 Möbius inversion and cyclotomic polynomials **Definition 1.1.** The Möbius function $\mu: \mathbb{Z}_{\geq 1} \to \{-1, 0, 1\}$ is given by $$\mu(n) = \begin{cases} (-1)^k & n \text{ is a product of } k \text{ distinct primes} \\ 0 & \text{otherwise.} \end{cases}$$ **Lemma 1.1.** For $n \geq 2$, $$\sum_{d|n} \mu(d) = 0.$$ Proof. First, $$\sum_{d|n} \mu(d) = \sum_{d|m} \mu(d),$$ where m is the product of the distinct primes dividing n. Say there are k of them. Then $$\sum_{d|m} \mu(d) = 1 - k + \binom{k}{2} + \dots + (-1)^k = (1-1)^k = 0.$$ **Theorem 1.1** (Möbius inversion formula). Let A be an abelian group, and let $f: \mathbb{Z}_{\geq 1} \to A$. Define $g: \mathbb{Z}_{\geq 1} \to A$ by $g(n) = \sum_{d|n} f(d)$. Then $$f(n) = \sum_{d|n} \mu(d)g(n/d).$$ *Proof.* By the lemma, $$\sum_{d|n} \mu(n/d)g(d) = \sum_{d|n} \sum_{k|d} \mu(n/d)f(k)$$ $$= \sum_{k|n} \sum_{\substack{d|n\\k|d}} \mu(n/d) f(k)$$ $$= \sum_{k|n} \left(\sum_{c|n/k} \mu((n/k)/c) \right) f(k)$$ $$= f(n).$$ #### Corollary 1.1. $$\Phi_n = \prod_{d|n} (x^d - 1)^{\mu(n/d)}.$$ *Proof.* Let $A = \mathbb{Q}(x)^x$, and let f send $d \mapsto \Phi_d$. Then $$g(n) = \prod_{\substack{d \ midn}} \Phi_d = x^n - 1.$$ Now apply the Möbius inversion formula. **Example 1.1.** $\Phi_1 = x - 1$, $\Phi_2 = x + 1$,and $\Phi_p = x^{p-1} + x^{p-2} + \cdots + x + 1$, where p is prime. If $p \mid n$, then $\Phi_{pn}(x) = \Phi_n(x^p)$. This also gives us that $$\Phi_{p^n} = x^{p^{n-1}(p-1)} + \dots + x^{p^{n-1}} + 1.$$ If $p \neq q$ are primes, $$\Phi_{pq}(x) = \frac{\Phi_q(x^p)}{\Phi_q(x)}$$ $$\frac{(x^{pq} - 1)(x - 1)}{(x^p - 1)(x^q - 1)} = \frac{\Phi_q(x^p)}{\Phi_q(x)}.$$ $$\Phi_{15} = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1.$$ **Theorem 1.2.** Φ_n is irreduible in $\mathbb{Q}[x]$. Proof. Suppose $\Phi_n = fg$ with f a monic irreducible polynoimal, and let ζ be a root of f. For $p \nmid n$ prime, ζ^p is a root of Φ_n . If ζ^p is a root of g, then $g(x^p)$ has ζ as a root, so $\underline{f}(x) \mid g(x^p)$. Reduce f and $g \pmod{p}$. We get $\overline{f}, \overline{g} \in \mathbb{F}_p[x]$. Then $\overline{g}(x^p) = \overline{g}(x)^p$. Then $\overline{f} \mid \overline{g}^p$, but \overline{f} has no multiple roots in \mathbb{F}_p , so $\overline{f} \mid \overline{g}$. So Φ_n has multiple roots \pmod{p} ; which is a contradiction. So ζ^p is a root of f. Therefore, ζ^a is a root of f for all $a \in \mathbb{Z}$ and $\gcd(a,n) = 1$, so $f = \Phi_n$. #### 1.2 Field embeddings **Definition 1.2.** If E, E'/F and $\varphi : E \to E'$ is an isomorphism, we sat that φ fixes F if $\varphi|_F = \mathrm{id}_F$. Elements $\alpha \in E$ and $\beta \in E'$, are **conjugate** over F if there exists an isomorphism $\varphi : F(\alpha) \to F(\beta)$ fixing F with $\varphi(\alpha) = \beta$. **Proposition 1.1.** Let E, E'/F. Elements $\alpha \in E$, $\beta \in E'$ are conjugate over F if and only if they have equal minimal polynomials in F[x]. *Proof.* Let α, β be conjugate over F. Then $\varphi(g(\alpha)) = g(\beta)$ for all $g \in F[x]$. Then α, β have the same minimal polynomial (α is a root of g(x) iff β is a root of g(x)). If α, β have the same minimal polynomial $f \in F[x]$, then $F[x]/(f) \cong F(\alpha)$ via $x \ mapsto \alpha$ and $F[x]/(f) \cong F(\beta)$ via $x \ mapsto \beta$. **Example 1.2.** The roots of $x^2 + 1$ a re ± 1 . There exists a field automorphism $\mathbb{C} \to \mathbb{C}$ $i \mapsto -i$ fixing \mathbb{R} , namely, complex conjugation. **Definition 1.3.** A **field embedding** is a ring homomorphism of fields (necessarily injective). If $\varphi : F \to M$ is an embedding and E/F is an extension, then $\Phi : E \to M$ **extends** φ if $\Phi|_F = \varphi$. **Example 1.3.** Let $\iota: \mathbb{Q} \to \mathbb{R}$ be the natural inclusion map. There are two field embeddings extending ι ; these are $\mathbb{Q}(\sqrt{2} \to \mathbb{R}$ sending $\sqrt{2} \mapsto \sqrt{2}$. There are no extensions to $\mathbb{Q}(i) \to \mathbb{R}$. **Theorem 1.3.** Let E/F be an extension, and let $\alpha \in E$ be algebraic over F. Let $\varphi : F$ to M be an embedding, and let $\tilde{\varphi} : F[x] \to M[x]$ be the induced map. Let f be the minimal polynomial of α . Then the extensions $\Phi : F(\alpha) \to M$ of φ are in 1-1 correspondence with the roots of $\tilde{\varphi}(f)$ in M via $\Phi \mapsto \Phi(\alpha)$. *Proof.* If $\tilde{p}(f)$ has a root β in M, let $\operatorname{ev}_{\beta}$ be evaluation at β . Consider $e_{\beta} \circ \tilde{\varphi} : F[x] \to M$. Then $\ker(e_{\beta} \circ \tilde{\varphi}_{\supseteq}(f))$. Since we are working in a PID, this is equality. We get $$F[x]/(f) \xrightarrow{\Phi} M$$ $$\downarrow \cong F(\alpha)$$ where $\Phi(\alpha) = \beta$. If $\Phi: F(\alpha) \to M$ extends φ , then write $f = \sum_{i=0}^n c_i x^i$, where $n = \deg(f)$. Then $$\tilde{\varphi}(f)(\Phi(\alpha)) = \sum_{i=0}^{n} \varphi(c_i)\Phi(\alpha)^i = \Phi(\sum_{i=0}^{n} c_i \alpha^i) = \Phi(f(\alpha)) = 0.$$ **Corollary 1.2.** Let E/F be finite, and let $\varphi : F \to M$ be a field embedding. The number of extensions of φ to $E \to M$ is $\leq [E : F]$. *Proof.* Induct on the degree. If $E = F(\alpha)$, then the number of roots of $\operatorname{irr}_F(\alpha)$ in M is $\leq [F(\alpha):F]$. Then the number of extensions is $\leq [F(\alpha):F]$ by the theorem. Consider extensions of these; the number for each is $\leq [E:f(\alpha)]$ by induction. So the number is $\leq [E:F]$. **Example 1.4.** We can extend $\iota: \mathbb{Q} \to \mathbb{R}$ to $\varphi: \mathbb{Q}(\sqrt{2}, \sqrt{3}) \to \mathbb{R}$ in 4 ways. However, there is only one way to embed $\mathbb{Q}(\sqrt[3]{2}) \to \mathbb{R}$ because $x^3 - 2 = (x - \sqrt[3]{2}) \cdot (\deg(2))$ in $\mathbb{R}[x]$. **Proposition 1.2.** Let E/F be algebraic, and let $\sigma: E \to E$ be an embedding fixing F. Then σ is an isomorphism. *Proof.* For any $\beta \in E$, let f be its minimal polynomial. The restriction to the finite set of roots σ : {roots of f in E} \rightarrow {roots of f in E} is a bijection (as it is injective). So $\beta \in \text{im}(\sigma)$.