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1 Möbius Inversion, Cyclotomic Polynomials, and Field Em-
beddings

1.1 Möbius inversion and cyclotomic polynomials

Definition 1.1. The Möbius function µ : Z≥1 → {−1, 0, 1} is given by

µ(n) =

{
(−1)k n is a product of k distinct primes

0 otherwise.

Lemma 1.1. For n ≥ 2, ∑
d|n

µ(d) = 0.

Proof. First, ∑
d|n

µ(d) =
∑
d|m

µ(d),

where m is the product of the distinct primes dividing n. Say there are k of them. Then∑
d|m

µ(d) = 1− k +

(
k

2

)
+ · · ·+ (−1)k = (1− 1)k = 0.

Theorem 1.1 (Möbius inversion formula). Let A be an abelian group, and let f : Z≥1 → A.
Define g : Z≥1 → A by g(n) =

∑
d|n f(d). Then

f(n) =
∑
d|n

µ(d)g(n/d).

Proof. By the lemma,∑
d|n

µ(n/d)g(d) =
∑
d|n

∑
k|d

µ(n/d)f(k)
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=
∑
k|n

∑
d|n
k|d

µ(n/d)f(k)

=
∑
k|n

∑
c|n/k

µ((n/k)/c)

 f(k)

= f(n).

Corollary 1.1.

Φn =
∏
d|n

(xd − 1)µ(n/d).

Proof. Let A = Q(x)x, and let f send d 7→ Φd. Then

g(n) =
∏

d midn

Φd = xn − 1.

Now apply the Möbius inversion formula.

Example 1.1. Φ1 = x − 1, Φ2 = x + 1 ,and Φp = xp−1 + xp−2 + · · · + x + 1, where p is
prime. If p | n, then Φpn(x) = Φn(xp). This also gives us that

Φpn = xp
n−1(p−1) + · · ·+ xp

n−1
+ 1.

If p 6= q are primes,

Φpq(x) =
Φq(x

p)

Φq(x)

(xpq − 1)(x− 1)

(xp − 1)(xq − 1)
=

Φq(x
p)

Φq(x)
.

Φ15 = x8 − x7 + x5 − x4 + x3 − x+ 1.

Theorem 1.2. Φn is irreduible in Q[x].

Proof. Suppose Φn = fg with f a monic irreducible polynoimal, and let ζ be a root of f .
For p - n prime, ζp is a root of Φn. If ζp is a root of g, then g(xp) has ζ as a root, so
f(x) | g(xp). Reduce f and g (mod p). We get f, g ∈ Fp[x]. Then g(xp) = g(x)p. Then
f | gp, but f has no multiple roots in Fp, so f | g. So Φn has multiple roots (mod p)¡
which is a contradiction. So ζp is a root of f . Therefore, ζa is a root of f for all a ∈ Z and
gcd(a, n) = 1, so f = Φn.
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1.2 Field embeddings

Definition 1.2. If E,E′/F and ϕ : E → E′ is an isomorphism, we sat that ϕ fixes F
if ϕ|F = idF . Elements α ∈ E and β ∈ E′, are conjugate over F if there exists an
isomorphism ϕ : F (α)→ F (β) fixing F with ϕ(α) = β.

Proposition 1.1. Let E,E′/F . Elements α ∈ E, β ∈ E′ are conjugate over F if and only
if they have equal minimal polynomials in F [x].

Proof. Let α, β be conjugate over F . Then ϕ(g(α)) = g(β) for all g ∈ F [x]. Then α, β
have the same minimal polynomial (α is a root of g(x) iff β is a root of g(x)).

If α, β haeve the same minimal polynomial f ∈ F [x], then F [x]/(f) ∼= F (α) via
x mapstoα and F [x]/(f) ∼= F (β) via x mapstoβ.

Example 1.2. The roots of x2 + 1a re ±1. There exists a field automorphism C → C
i 7→ −i fixing R, namely, complex conjugation.

Definition 1.3. A field embedding is a ring homomorphism of fields (necessarily injec-
tive). If ϕ : F →M is an embedding and E/F is an extension, then Φ : E →M extends
ϕ if Φ|F = ϕ.

Example 1.3. Let ι : Q→ R be the natural inclusion map. There are two field embeddings
extending ι; these are Q(

√
2→ R sending

√
2 7→

√
2. There are no extensions to Q(i)→ R.

Theorem 1.3. Let E/F be an extension, and let α ∈ E be algebraic over F . Let ϕ : F toM
be an embedding, and let ϕ̃ : F [x] → M [x] be the induced map. Let f be the minimal
polynomial of α. Then the extensions Φ : F (α)→ M of ϕ are in 1-1 correspondence with
the roots of ϕ̃(f) in M via Φ 7→ Φ(α).

Proof. If p̃(f) has a root β in M , let evβ be evaluation at β. Consider eβ ◦ ϕ̃ : F [x]→M .
Then ker(eβ ◦ ϕ̃⊇(f). Since we are working in a PID, this is equality. We get

F [x]/(f) M

F (α)

∼=
Φ

where Φ(α) = β.
If Φ : F (α)→M extends ϕ, then write f =

∑n
i=0 cix

i, where n = deg(f). Then

ϕ̃(f)(Φ(α)) =

n∑
i=0

ϕ(ci)Φ(α)i = Φ(

n∑
i=0

ciα
i) = Φ(f(α)) = 0.

Corollary 1.2. Let E/F be finite, and let ϕ : F → M be a field embedding. The number
of extensions of ϕ to E →M is ≤ [E : F ].
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Proof. Induct on the degree. If E = F (α), then the number of roots of irrF (α) in M is
≤ [F (α) : F ]. Then the number of extensions is ≤ [F (α) : F ] by the theorem. Consider
extensions of these; the number for each is ≤ [E : f(α)] by induction. So the number is
≤ [E : F ].

Example 1.4. We can extend ι : Q→ R to ϕ : Q(
√

2,
√

3)→ R in 4 ways. However, there
is only one way to embed Q( 3

√
2)→ R because x3 − 2 = (x− 3

√
2) · (deg(2)) in R[x].

Proposition 1.2. Let E/F be algebraic, and let σ : E → E be an embedding fixing F .
Then σ is an isomorphism.

Proof. For any β ∈ E, let f be its minimal polynomial. The restriction to the finite set
of roots σ : {roots of f in E} → {roots of f in E} is a bijection (as it is injective). So
β ∈ im(σ).
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